
Projects descriptions and indications

You are asked to form groups of 3 students max.

Each group has to chose one of the following problems, design algorithms for the solution, and 
write a report including:
1. a description of the adopted solution (4 points)
2. comments/description of the designed algorithms, possibly by using examples (4 points); 

comments to main fragments of code (3 points)
3. experimental analysis, concerning in particular scalability (except for the last project on 

recommendation systems for which scalability analysis is not required)  (3 points)
4. comments about the experimental analysis outlining weak and strong points of the algorithms. 

(3 points)
5. an appendix including the code. (3 points)

A pdf version of the report has to be sent via email (dario.colazzo@dauphine.fr) before September 
15,   2018. 

For any question regarding the projects feel free to ask by email if needed. If needed we can 
arrange for a telephone call or a meeting in July (I am absent from June 30  to July 8). 

IMPORTANT, for all projects: you are allowed to consult available documentation on the Web in 
order to learn required algorithms, in particular for the fourth project. 
A suggested text is Data-Intensive Text Processing with MapReduce, by Jimmy Lin and Chris Dyer, 
freely available on the web, Just google the title plus ‘pdf’. 

Matrix multiplication. Consider the problem of multiplying two big matrixes An,m and Bm,n . Design 
MapReduce algorithms in Spark for this problem, knowing that up to two jobs may be needed. 
Consider the simple textual representation of a matrix where the value v for Ai,j is represented by a 
text line ‘i j v’. Only non-zero values will have a line in the textual file  representing a matrix. 
Provide at least two  non-trivial different algorithms, and implement them in Spark. Perform 
experimental evaluation by considering 5 couples of matrixes of increasing sizes, by doubling the 
sizes from a pair of matrix to the subsequent pair. You can use Spark to generate  big matrixes. In 
case of problems with your computer resources, the size of matrixes can stay under 1 GB. 

TF-IDF. Consider the problem of calculating the TF-IDF score for each word in a set of documents 
for each document. Many sources on the web describes the sequential TF-IDF algorithm.
Provide a MapReduce algorithm in Spark to calculate TF-IDF scores given an input set of 
documents. Provide both a MapReduce Python Hadoop streaming and a Spark implementation. 
Perform experimental analysis in order to compare performances of the two implementation. To 
test scalability consider 5 document sets of increasing sizes.  For instance, size can double from a 
set to another. 
The set of input textual document can be either dowloaded from the Web or generated by a Python 
script for instance. To speed up document generation Spark  can be used. Words of documents 
can be randomly picked from an input fixed vocabulary.

Words co-occurrence matrix.  Consider the the problem of building a word co-occurrence 
matrice from large corpora of textual documents. Formally, the co-occurrence matrix  is a square n 
X n matrix where n is the number of unique words in all the documents (i.e., the vocabulary size). A 
cell mij contains the number of times word wi co-occurs with word wj within a specific context—a 
natural unit such as a sentence, paragraph, or a document; for simplicity consider that the context 
is a document, and consider an input collection of relatively small documents, that you can 
generate starting from a fixed vocabulary. MapReduce/Spark can be used to generate the 



documents. Note that the upper and lower triangles of the matrix are identical since co-occurrence 
is a symmetric relation.
Implement a Spark  algorithm for this problem in Python. Performs scalability analysis on five 
document sets of increasing sizes. For instance, size can double from a set to another. 
Also, you can use Spark to make document generation easier. 

Single-source shortest path problem. The task is to find shortest paths from a source node to all 
other nodes in a directed graph. This problem is solved by the Dijkstra’s algorithm, which is 
sequential.
The project has a double purpose. First get familiar with Dijkstra’s algorithm, then devise a 
MapReduce  version of the algorithm in Spark. As you will realise, the process is actually iterative, 
so the Spark algorithm must be iterative too.
Provide a  Spark implementation of the algorithm, and test it on a simple graph you will provide.
Then perform scalability experiments on graphs of increasing sizes as for previous projects.  You 
can use Spark to generate the graphs. 

Warning: this project is particularly difficult as it requires the study and understanding of scientific 
paper below indicated. 
Simple recommender system based on latent classes - Probabilistic Semantic Latent 
Indexing (PLSI)
Let us consider a dyadic dataset, composed of N users U = {u1, … uN} and M items I = {i1, …, iM}. 
For each (user, item) pair, you know if a user interacted with or liked an item. In this project, you 
will implement a basic recommendation algorithm based on Hoffman (1999) work, to recommend 
items to users.

Hoffman (1999) describes a simple probabilistic algorithm based on latent classes. Latent classes 
are unobserved classes, clustering both users and items. The authors assume a multinomial 
distribution of users given latent classes, and of items given classes. Users and item can then 
belong to several latent classes. Latent classes are expected to gather similar items and users, for 
example, there can be a class gathering sci-fi fans and Star Trek movies.
Parameter estimation is done using the EM algorithm, which is a standard procedure when working 
with latent parameters.

This algorithm was one of the building bricks of Google News recommender system.  Das (2007) 
describe Google’s MapReduce implementation of the basic PLSI algorithm (see section 4.2). 

You are asked to implement in Spark the PLS algorithm, based on Das (2007) MapReduce 
formulation, and to apply it on the well known Movielens dataset.
Note that the Movielens dataset contains ratings ranging from 1 to 5. You can reduce this 
information to seen/not seen in order to use the basic version of PLSI. If you are very motivated, 
you can try to integrate preference values to PLSI, as described in Hoffman (1999). You can also 
compare your results to Spark LDA implementation and discuss the use of LDA versus PLSI.
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